
CSCI1570 Design and Analysis of Algorithms

Homework 1: Searching and Sorting

Due: September 18, 2025

This homework must be typed in LATEX and submitted via Gradescope.

Please ensure that your solutions are complete, concise, and communicated clearly. Use full sen-
tences and plan your presentation before your write. Except where indicated, consider every prob-
lem as asking for a proof.

Searching and Sorting 1 Fall 2025



CSCI1570 Design and Analysis of Algorithms

Problem 1. The Fibonacci numbers is a sequence of numbers starting with f1 = f2 = 1 defined
by the recurrence:

fn+2 = fn + fn+1

for n ≥ 1. Use induction to prove the following formula for n ≥ 1:

P (n) :=

n∑
i=1

f2
i = fnfn+1

Solution.
Base Case: In the case where n = 1 we have that

1∑
i=1

f2
i = 1 = 1 · 1 = f1f2

Induction Hypothesis: Suppose that the statement holds inductively for n = k, or in other
words

k∑
i=1

f2
i = 12 + 12 + · · ·+ f2

k︸ ︷︷ ︸
k terms

= fkfk+1

Induction Step: We want to show that the statement holds for the case when n = k + 1. Notice
that

k+1∑
i=1

f2
i = 12 + 12 + · · ·+ f2

k︸ ︷︷ ︸
P (k)=fkfk+1

+f2
k+1 = fkfk+1 + f2

k+1 = fk+1(fk + fk+1)

By the definition of the Fibonacci numbers, we have that

P (k + 1) =
k+1∑
i=1

f2
i = fk+1(fk + fk+1) = fk+1fk+2

which closes the induction.

Problem 2. A geometric sequence with common ratio r is a sequence of numbers given by:

a1, a1r, a1r
2, a2r

3, · · ·

For example, the following is a geometric sequence with common ratio 2.

1, 2, 4, 8, 16, · · ·

Describe an algorithm to find the value of a deleted term of a geometric sequence of length n with
common ratio r in O(logn) time. For example, the sequence

1,
1

3
,
1

9
,

1

81
,

1

243

is missing the term
1

27
.

Searching and Sorting 2 Fall 2025



CSCI1570 Design and Analysis of Algorithms

Solution. The idea here is to modify binary search by comparing an element at a given index i to
the expected value of the element of the sequence at index i. If the element in the array is not the
expected value, the missing element must be in the left sub-array, otherwise the missing element is
in the right sub-array.

Algorithm 1 Missing Element in Sequence
Input: A geometric sequence, arr, with common ratio r with a term missing

Output: The value of the missing term

1: function ModifiedBinarySearch(arr, r)
2: leftIndex, rightIndex ← 0, length of arr - 1

3: while leftIndex ≤ rightIndex do

4: middleIndex ← integer average of leftIndex and rightIndex

5: if arr[0]rmiddleIndex = arr[middleIndex] then

6: leftIndex = middleIndex + 1

7: else

8: rightIndex = middleIndex - 1

9: return arr[0]rleftIndex

We can compute the ith term (0-indexed) of a geometric series using the formula

ai = a0r
i

Therefore, if the element at index i is not equal to what we expect, this means that the missing
element must be in the left sub-array since the the recurrence relationship does not hold. If the
element at index i is equal to what we expect, then the missing element must be in the right
sub-array since we are guaranteed that there is one missing element.

The runtime of this algorithm is O(logn) since this is a slight modification of binary search.

Searching and Sorting 3 Fall 2025



CSCI1570 Design and Analysis of Algorithms

Problem 3. Let X = [a1, · · · , an] and Y = [y1, · · · , yn] be two sorted arrays (in non-decreasing
order). For simplicity, assume n is a power of 2.

(a) Describe an algorithm to find the median of all 2n elements in the arrays X and Y in O(log n)
time.

(b) Provide a succinct proof of the correctness of the algorithm.

(c) Provide an analysis of the running time (asymptotic analysis is correct) and memory utiliza-
tion of the algorithm.

Hint: Note that the given arrays are already sorted and of the same size! You may want to use
binary search to exploit this fact. :)

Solution. Algorithm:

• If n = 1 or n = 2 then merge the arrays X and Y manually and find the median of the new
array.

• If n > 2, then we’ll first compute Xwmid = ⌊n2 ⌋ and Ymid = n− 1−Xmid.

1. (condition 1) If (X[Xmid] ≤ Y [Ymid+1]) and (Y [Ymid] ≤ X[Xmid+1]), then identify the
2 largest numbers from the list [Y [Ymid − 1], Y [Ymid], X[Xmid], X[Xmid − 1] and return
their average.

2. (condition 2) If X[Xmid] > Y [Ymid + 1], then recur on X[0 : Xmid] and Y [Ymid + 1 :],
and return its result.

3. (condition 3) Otherwise (ie. Y [Ymid] > X[Xmid + 1]), then recur on X[Xmid + 1] and
Y [0 : Ymid], and return its result.

Correctness: To prove that our algorithm works for k ≥ 2, we use strong induction over the
predicate P (n) : our algorithm correctly computes the median of two sorted arrays of lengths n.

Base Cases: P (1) and P (2) hold since we are manually computing the median after merging
the two arrays.

Inductive Hypothesis: Suppose that for k = {3, . . . , n}, P (k) holds. We’ll prove that P (n+ 1)
holds.

If condition 1 holds, all of the elements in X[0 : Xmid + 1]
⋃
Y [0 : Ymid + 1] must be less than

or equal to all of the elements from X[Xmid+1 :]
⋃
Y [Ymid+1 :]. Then, the median will simply be

the average of the two largest numbers from X[0 : Xmid + 1]
⋃
Y [0 : Ymid + 1].

If condition 2 holds, Xmid should be at a lower index in X (inversely, Ymid should be at a greater
index in Y ). The maximum length of the sub-arrays we recur on are at least of length 1 and at
most length n. Recurring on these inputs should yield the correct solution.

If condition 3 holds, Xmid should be at a greater index in X. As previously explained, recur-
ring on the new sub-arrays should yield the correct solution.

Searching and Sorting 4 Fall 2025



CSCI1570 Design and Analysis of Algorithms

Conclusion: Since our algorithm yields a correct solution in all cases of the if-then selection,
P (n+ 1) must hold. By strong induction, P (k) holds for all k ≥ 1.

Time Complexity: At each step of the algorithm, we approximately halve (ie. +/- 1) the
length of the input arrays and perform a fixed series of constant time computations, C. Thus, the
runtime of our algorithm is O(C log2 n) = O(log(n)).

Memory Utilization: In practice, our approach uses a left and right pointer to keep track of
the input sub-arrays. We also temporarily allocate space for Xmid and Ymid, so our overall memory
complexity is O(1).

Searching and Sorting 5 Fall 2025



CSCI1570 Design and Analysis of Algorithms

Problem 4. Let S be an array of n distinct integers. An inversion in S is a pair of indices i and
j such that i < j, but Si > Sj . For example, following sequence has six inversions:

{8, 6, 4, 1}
(8, 6), (8, 4), (8, 1), (6, 4), (6, 1), (4, 1)

Describe an algorithm running in O(n logn) time to determine the number of inversions in S.

Solution. Consider the following modification of MergeSort.

Algorithm 2 Counting Inversions
Input: Two sorted arrays to merge, leftArr and rightArr

Output: A pair containing the merged sorted array and the number of inversions

1: function ModifiedMerge(leftArr, rightArr)

2: outputArr ← []

3: inversionCounter ← 0

4:

5: while leftArr and rightArr are not empty do

6: if rightArr is empty or leftArr[0] ≤ rightArr[0] then

7: remove the first element of leftArr and append it to outputArr

8: else if leftArr is empty or rightArr[0] < leftArr[0] then

9: increment inversionCounter by the length of leftArr

10: remove the first element of rightArr and append it to outputArr

11:

12: return (outputArr, inversionCounter )

Input: An array to sort and optionally the total number of inversions so far

Output: The sorted array and the number of inversions required to sort the array

13: function ModifiedMergeSort(arr, numberOfInversions = 0)

14: if the arr has length ≤ 1 then

15: return (arr, 0)

16:

17: leftArr, leftInversions ← ModifiedMergeSort(left half of arr)

18: rightArr, rightInversions ← ModifiedMergeSort(right half of arr)

19: sortedArr, mergeInversions ← ModifiedMerge(leftArr, rightArr)

20:

21: return (sortedArr, leftInversions + rightInversions + mergeInversions )

This algorithm correctly counts the number of inversions in an input array. The order of the input
numbers in MergeSort are changed during the merge step. Since the arrays to ModifiedMerge
are sorted, if the leftmost element of the right array is smaller than the leftmost element of the left
array, we know that the leftmost element of the right array is smaller than all of the elements in
the left array. These are exactly the inversions in the original array. Therefore, the total number of
inversions in the array are given by the total number of inversions required to sort each sub-array
along with the total number of inversions required to merge the sub-arrays.

Searching and Sorting 6 Fall 2025



CSCI1570 Design and Analysis of Algorithms

The modifications required to MergeSort to count inversions does not affect the overall big-O
runtime class. Incrementing a counter in ModifiedMerge will affect the runtime of Modified-
Merge by a constant. Therefore, the overall runtime of ModifiedMergeSort is in the same
asymptotic class as MergeSort which runs in O(n log n) time.

Searching and Sorting 7 Fall 2025


