
CSCI1570 Design and Analysis of Algorithms

Homework 2: Greedy

Due: September 25, 2025

This homework must be typed in LATEX and submitted via Gradescope.

Please ensure that your solutions are complete, concise, and communicated clearly. Use full sen-
tences and plan your presentation before your write. Except where indicated, consider every prob-
lem as asking for a proof.

Greedy 1 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 1. The power lines along a country road have been modified to carry broadband Internet.
Wi-Fi towers are being built along the road to provide the community with internet. To find the
minimum number of towers required so that each house is sufficiently close to at least one tower,
we model the problem as follows:

a) The entire course staff has taken up residence on Algorithm Street. The diagram below shows
where they all live on the street.

Omer lives 5 miles down the road, Nam lives 13 miles down the road, and so on. Wi-Fi towers
have an effective radius of 5 miles. Determine the minimum number of Wi-Fi towers needed
such that each staff member has internet, and give the locations for these towers as well.

b) We’re given a line segment ℓ, a set of non-negative numbers N that represents the locations
of customers on ℓ, and a distance d. We wish to find a set of Wi-Fi towers of minimal size on
ℓ such that each location in N is at most d away from some tower. Give an efficient greedy
algorithm that returns a minimum size set of points. Prove its correctness and justify its
runtime.

Now we generalize our model to account for houses that are not by the side of the road.

c) We’re given a line segment ℓ, a set of pairs N representing the locations of customers, and a
distance d. For each pair (x, y) ∈ N , let x ∈ [0,∞) be the distance along ℓ and y ∈ [−d, d] be
the distance above or below ℓ. We wish to find a set of Wi-Fi towers of minimal size on ℓ such
that each location in N is at most distance d from some tower (here, we are using Euclidean
distance).

Modify your algorithm from part (b) to solve this variation of the problem. You do not need
to prove its correctness, but please explain how your proof from part (b) would (or would
not) need to change based on your modifications.

Can we generalize further?

d) Does the correctness of your algorithm depend on the fact that ℓ is a line segment and not
some curve? If so, give an example that illustrates the problem with your algorithm when ℓ
is a curve. If not, explain how your algorithm could handle a curve. You shouldn’t be writing
another algorithm, or modifying your existing algorithm, just explain your reasoning.

Solution. a) We position 3 Wi-Fi towers within the ranges [8, 10], [20, 23], and [29, 39] such that

Greedy 2 Fall 2025

CSCI1570 Design and Analysis of Algorithms

no two are placed within the same interval.

b) We will use a greedy algorithm to place the towers. The idea is to place each tower at the
farthest possible location that covers the most uncovered customers.

Sort the customer locations in N in increasing order. Let N = {n1, n2, . . . , nk} where n1 ≤ n2 ≤
· · · ≤ nk. Begin with the first customer in the sorted list. Since this customer is uncovered, place
a tower at the farthest point that can still cover this customer. Specifically, place the tower at
n1 + d (since the tower covers up to a distance d). After placing a tower, skip all customers
that are within d units of the current tower. Then repeat the process for the next uncovered
customer. Terminate when all customers are covered (end of list reached).

Below is the pseudocode:

Algorithm 1 Minimum Number of Wifi Towers

Input: A set of nonnegative numbers N representing locations of customers and

nonnegative distance d
Output: Minimum number of wifi towers guaranteeing full coverage

1: function findLocations(N, d)
2: Sort(N)

3: towers ← 0
4: i← 0
5: n← length(N)
6: while i < n do

7: towers + = 1
8: tower location ← N [i] + d
9: while i < n and N [i] ≤ tower location +d do

10: i+ = 1
11: return towers

Proof of correctness: We argue correctness using the greedy exchange argument.

Let G be the greedy solution in sorted order, and let gi be the position of the i-th tower placed
by the greedy algorithm. Similarly, let O be any optimal solution in sorted order, and let oi be
the position of the i-th tower placed by the optimal solution.

Suppose G ̸= O; that is, G and O differ in their tower placements. Let t be the smallest index
such that gt ̸= ot. Up to index t− 1, the greedy solution and the optimal solution place towers
at the same positions: gi = oi for all i < t. Let a ∈ N be the leftmost customer not covered by
the first t − 1 towers (i.e., by g1, . . . , gt−1). Since G and O agree on the first t − 1 towers, a is
the same for both solutions.

The greedy algorithm places the t-th tower at gt = a+ d. The coverage interval of this tower is
[a, a+ 2d].

The optimal solution places the t-th tower at ot ̸= gt. Since ot must cover customer a, it must
satisfy ot ∈ [a− d, a+ d].

Replace ot with gt in O to form a new solution O′ without increasing the number of towers or
decreasing coverage. All customers to the left of a are already covered by the first t− 1 towers
in both G and O. Since gt ≥ ot, gt covers all the customers to the right of a that ot covers.

We have now decreased the number of differences between G and O by performing the exchange.
By iterating this exchange we can turn O into G without impacting the quality of the solution.

Greedy 3 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Therefore, G must be optimal.

Since any optimal solution O can be transformed into the greedy solution G through a series of
exchanges that do not increase the number of towers or reduce coverage, the greedy solution G
must be optimal.

Runtime Justification: Sorting the list of customer locations takes O(n logn), where n = |N |.
Placing the towers and moving through the list takes O(n), since we go through the list of
customers exactly once.

Thus, the overall time complexity of the algorithm is O(n log n).

c) Algorithm description: For each customer (xi, yi), calculate hi =
√
d2 − y2i . Then determine

the interval [li, ri] = [xi − hi, xi + hi]. This interval represents all possible positions along ℓ
where a tower can be placed to cover customer i. Then sort the intervals [li, ri] in increasing
order of their right endpoints ri. Create an empty list S to store tower positions. While there
are intervals not yet covered, select the interval with the earliest right endpoint. Let [li, ri] be
the interval with the smallest right endpoint ri. Place a tower at position s = ri and add s to S.
Remove all intervals [lj , rj] where lj ≤ s. These are the intervals that are covered by the tower
at s. Finally, return the size of S.

Below is the pseudocode:

Algorithm 2 Generalized Minimum Number of Wifi Towers

Input: A set of pairs N representing locations of customers where (x, y) ∈ N has

x ≥ 0 and y ∈ [−d, d] and nonnegative distance d
Output: Minimum number of wifi towers guaranteeing full coverage

1: function findGeneralizedLocations(N, d)
2: Initialize list Intervals

3: for (xi, yi) ∈ N do

4: hi ← sqrt(d2 − y2i)
5: li ← xi − hi
6: ri ← xi + hi
7: Add interval [li, ri] to Intervals

8: Sort Intervals in increasing order of right endpoints ri
9: Initialize empty list S
10: while Intervals is not empty do

11: Let [li, ri] be the first interval in Intervals

12: Place a tower at position s = ri
13: Add s to S
14: Remove all intervals [lj , rj] from Intervals where lj ≤ s
15: return |S|

Modification of the Proof from Part (b): The proof from part (b) needs to be adjusted
for part (c) because customers are no longer points on the line but have coverage intervals
along the line segment due to their positions above or below it. In part (c), each customer
defines an interval of feasible tower positions where they can be covered, turning the problem
into an interval covering problem. Therefore, the exchange argument must account for these
intervals rather than fixed points. The modified proof demonstrates that placing towers at the
right endpoints of the earliest finishing intervals (as per the greedy algorithm) remains optimal.

Greedy 4 Fall 2025

CSCI1570 Design and Analysis of Algorithms

The exchange moves involve replacing towers in any optimal solution with those chosen by the
greedy algorithm, ensuring coverage of the same or more intervals without increasing the number
of towers. Thus, while the core structure of the proof—the exchange argument—remains the
same, it adapts to consider intervals instead of individual points to establish the optimality of
the modified algorithm.

d) The correctness of the algorithm depends on the fact that ℓ is a line segment. Consider the
unit circle. If a customer is located at (−1, 0), the algorithm from part c) would attempt to
place a Wi-Fi tower as far to the right of the customer as possible while staying within the
allowed distance d. However, since the circle has two locations (one on the upper semicircle and
one on the lower semicircle) that are equidistant from the customer, the algorithm could place
the tower in either direction, potentially missing other customers or having to place additional
towers. This ambiguity does not arise with a line segment because each location has only one
direction that extends to the rightmost distance without looping back. Thus, the correctness of
the algorithm in c) relies on ℓ being a line, and the approach may not generalize correctly for
non-linear curves.

Greedy 5 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 2. Given an array A of n distinct integers sorted in non-decreasing order, design an
O(logn) algorithm to decide (i.e. output true/false) whether there exists an index i such that
A[i] = i.

1. Provide a succinct (but clear) description of your algorithm. You may provide pseudocode.

2. Prove the correctness (optimality) of your algorithm.

3. Analyze the running time and memory utilization of your algorithm.

Solution.

1. Algorithm description. The array A is sorted and contains distinct integers. Define
f(i) = A[i]− i. Observe that:

• If f(i) = 0, then A[i] = i and we are done.

• If f(i) > 0, then for all j > i, we have f(j) > 0 (since A is strictly increasing).

• If f(i) < 0, then for all j < i, we have f(j) < 0.

Thus, f(i) is strictly increasing, which means we can perform binary search to locate an
index i such that f(i) = 0.

Algorithm 3 Check Fixed Point in Sorted Array

Input: Array A of n distinct sorted integers

Output: true if ∃i such that A[i] = i, else false

1: function FixedPoint(A)
2: low ← 0, high ← n− 1
3: while low ≤ high do

4: mid ← ⌊(low + high)/2⌋
5: if A[mid] = mid then

6: return true

7: else if A[mid] > mid then

8: high ← mid −1
9: else

10: low ← mid +1
11: return false

2. Proof of correctness. Since f(i) = A[i]− i is strictly increasing, it crosses zero at most
once.

• If f(mid) = 0, then A[mid] = mid and we return true.

• If f(mid) > 0, then f(j) > 0 for all j > mid. Therefore, if a solution exists, it must
be to the left of mid, so we set high = mid −1.

• If f(mid) < 0, then f(j) < 0 for all j < mid. Therefore, if a solution exists, it must
be to the right of mid, so we set low = mid +1.

Greedy 6 Fall 2025

CSCI1570 Design and Analysis of Algorithms

By induction on the shrinking search interval, the binary search guarantees that if there
exists an index i with A[i] = i, the algorithm finds it. If no such index exists, the search
interval shrinks to empty and the algorithm correctly returns false. Thus, the algorithm
is correct.

3. Running time and memory analysis. At each step, binary search discards half of the
current interval. Therefore, the running time is:

O(logn).

The memory utilization is constant: we only store a few integer variables (low, high, mid).
Therefore, the space complexity is:

O(1).

Greedy 7 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 3. Suppose you are given a set S = {a1, a2, ..., an} of tasks, where task ai requires pi
units of processing time to complete, once it has started. You have access to a computer to run
these tasks one at a time. Let ci be the completion time of task ai, i.e. the time at which task
ai completes processing. Your goal is to minimize the average completion time:

1

n

n∑
i=1

ci

For example, suppose there are two tasks, a1 and a2, with p1 = 3 and p2 = 5, and consider the
schedule in which a2 runs first, followed by a1. Then, c2 = 5, c1 = 8, and the average completion
time is 6.5.

(a) Give an algorithm that schedules the tasks to minimize the average completion time. Each
task must run non-preemptively, that is, once task ai is started, it must run continuously
for pi units of time. Prove that your algorithm minimizes the average completion time,
and prove the running time of your algorithm.

(b) Suppose now that the tasks are not available at once. Each task has a release time ri
before which it is not available to be processed. Suppose also that we allow preemption,
meaning a task can be suspended and restarted later.

For example, a task ai with processing time pi = 6 may start running at time 1 and
be preempted at time 4. It can then resume at time 10 but be preempted at time 11
and finally resume at time 13 and complete at time 15. Task ai has run for a total of
6 time units, but its running time has been divided into three pieces. We say that the
completion time of ai is 15.

Give an algorithm that schedules the tasks so as to minimize the average completion time
in this new scenario. Prove that your algorithm minimizes the average completion time,
and state the running time of your algorithm.

Solution.

(a) Consider the following algorithm:

Algorithm 4 Non-Preemptive Task Scheduling

Input: A set of tasks S with their processing times

Output: A schedule (list) of tasks that minimize the average completion time

1: function NonPreemptiveTaskScheduling(S)
2: return S sorted with respect to processing time in increasing order

To show this solution is optimal, we proceed by way of contradiction. Suppose, there
exists a schedule S = [a1, · · · , an] that has a shorter average completion time than our
above greedy solution. Since this schedule is not the greedy solution we know that there
exists two tasks ai and aj such that i < j but pi > pj .

Because task ai takes longer than aj , we assert that the solution can be improved by
first scheduling aj and then later scheduling ai. One can verify this by comparing the

Greedy 8 Fall 2025

CSCI1570 Design and Analysis of Algorithms

total completion times of the supposed optimal schedule and the schedule obtained by
swapping pi and pj .

The original schedule has a total completion time given by:

p1 + (p1 + p2) + · · ·+ (p1 + · · ·+ pn) =
n∑

k=1

(n− k − 1)pk

By swapping the positions of tasks ai and aj , the new total completion time becomes:

(j − i)pj − (j − i)− pi︸ ︷︷ ︸
replace (j − i) pi’s with pj ’s

+

n∑
k=1

(n− k − 1)pk

Since we assumed that i < j and pi > pj , it follows that (j − i)pj < (j − i)pi. Therefore,
the swapped schedule has a shorter total completion time and therefore, a shorter average
completion time. This contradicts the assumption that the original schedule was optimal.

Since this algorithm simply returns a sorted list, the runtime of this algorithm isO(n logn).

(b) Consider the following algorithm:

Algorithm 5 Preemptive Task Scheduling

Input: A set of tasks S with their processing and release times

Output: A schedule (list) of tasks that minimize the average completion time

1: function PreemptiveTaskScheduling(S)
2: Sort the tasks in the order of increasing release time

3: currentTime ← the first (minimum) release time

4: Make a priority queue, availableTasks, with all tasks whose release time

is less than the currentTime, where the queue is ordered in ascending

processing time

5: while currentTime ≤ the final release time do

6: Schedule the next available task (top of priority queue) in

availableTasks modifying its processing time to be the difference

between the current time and the next release time. If the task is

finished remove it from the queue entirely.

7: currentTime ← the next task release time

8: Add the newly released tasks to availableTasks

9: return a list containing the scheduled tasks

The same concept of always doing the shortest task applies from part (a). The difference is
that we have to re-determine which task is shortest whenever new tasks become available.
The while loop is structured such that whenever new tasks become available, they are
inserted into a priority queue. This ensures that at all times, the shortest available task
is scheduled.

First, the list of n tasks is sorted by release time. This takes O(n log n) time. Then,
the while loop performs the tasks. Each task gets added to the queue at most once, and
removed from the queue at most once. Since adding and removing from a priority queue
can be performed in O(log n), adding and removing all elements will take O(n log n) time.
Therefore, the overall runtime is O(n logn).

Greedy 9 Fall 2025

