CSCI1570 Design and Analysis of Algorithms

Homework 3:
Due: October 2nd, 2025 at 2:30p.m.

This homework must be typed in INTEX and submitted via Gradescope.

Please ensure that your solutions are complete, concise, and communicated clearly. Use full sen-
tences and plan your presentation before your write. Except where indicated, consider every prob-
lem as asking for a proof.

1 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 1.

1. Consider a partition of the vertices of a graph G = (V, E) into two disjoint subsets U and W,

UUW =V. Let e be an edge of minimum weight across the partition. Prove that there is a
minimum spanning tree of G containing edge e.

2. Formulate and analyze a greedy algorithm for minimum cost spanning tree based on the above

property.

Solution. 1. Cut Property Let (U, W) be a cut of G, and let e = zy be a minimum-weight

edge among all edges with one endpoint in U and the other in W. We prove that there exists
an MST that contains e.

Proof. Take any minimum spanning tree T of G. If e € T' we are done. Otherwise, adding e
to T creates a unique cycle C (since T is a tree). This cycle must contain at least one other
edge f crossing the same cut (U, W) (as = and y lie on different sides of the cut, any = —y
path in 7" must cross the cut an odd number of times; in particular, at least once). Remove
such an f from 7' U {e} to obtain a new spanning tree 7" =T U {e} \ {f}.

By the choice of e as a minimum-weight edge crossing the cut, w(e) < w(f). Therefore
w(T') = w(T) +w(e) —w(f) < w().

Since T' is minimum, w(7T") = w(T'), so T" is also a minimum spanning tree and it contains
e. O

(i) Kruskal’s algorithm. Sort all edges by nondecreasing weight; scan in this order, adding an
edge if and only if it does not create a cycle with the edges already chosen. Implement cycle
detection with a disjoint-set union (Union-Find) data structure.

Algorithm 1 Kruskal(G = (V, E))

~N O O W N =

Initialize a forest F < (); make-set(v) for all v eV
Sort E as ej,...,6y by nondecreasing weight
for j=1 to m do

let ej = (u,v)
if find(u) # find(v) then > adding e; won’t form a cycle
. F« FuU{ej}; union(u,v)

return I

Correctness sketch. At every step, consider the cut induced by the connected components
(current forest) that respects the chosen edges. Among all edges crossing that cut, the first
edge by weight is safe by the Cut Property; Kruskal picks exactly such safe edges, hence
returns an MST.

Running time. Sorting takes O(mlogm) = O(mlogn). Total O(mlogn) time and O(n)

extra space.
O

2 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 2. Tianren really likes reversible words, i.e., words that read the same forwards and
backwards (e.g., racecar, kayak, level).

1. Given a string with n lower-case English letters, design an efficient dynamic program that
finds the longest substring (a consecutive sequence of characters) that is a reversible word
(i.e., a palindrome).

2. Provide proof of correctness and analyze time and memory.

Solution. Let s[0..n — 1] be the string. Define a DP table

Pli.j| = {true if s[i..j] is a palindrome, 0<i<j<n

false otherwise,

Recurrences (process by increasing length ¢ = j — i + 1):

Base: Pl[i,i] = true (1-char),
Pli,i+ 1] = (s[i] = s[i +1]) (2-char),
Step: Pl[i,j| = (s[i] = s[j]) A Pli+1,7—1] (¢ >3).

Track the longest (i with P [i’j]:twc.

Algorithm 2 LongestPalSubstring(s)
n < |s|; initialize P[0..n — 1][0..n — 1] < false

2: bestlen < 1, best(s,j) < (0,0)

3: for i =0 to n—1 do PJ[i,i] + true

4: for =0 to n—2 do

5: | if s[i] = s[i + 1] then PJi,i+ 1] + true; bestLent 2; best¢ (i,i+ 1)
6: for /=3 to n do

7: for i1=0 to n—{ do

8: je—i+l—-1

9: if s[i] = s[j] and P[i+ 1][j — 1] then

10: PJi, j] + true

11: L if ¢ > bestLen then bestLen< /; best<« (i,7)
12: return s[best(i)..best(j)]

Correctness. We prove by induction on substring length ¢ that P[i, j] is true iff s[i..j] is a
palindrome.

Base ¢ = 1,2. Trivial by definition. Inductive step. Assume correctness for all lengths < £.
For length ¢ > 3, s[i..j] is a palindrome iff its endpoints match and the interior s[i + 1..j — 1]
is a palindrome. By the IH, P[i + 1,5 — 1] correctly captures palindromicity of the interior;
thus the recurrence is correct.

Since we enumerate all (7, j) in increasing ¢ and maintain the best true entry, the returned
substring is the longest palindrome.

3 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Complexity. The DP fills ©(n?) entries; each in O(1) time. Hence time O(n?), space O(n?).
(If desired, a non-DP “expand around centers” method yields O(n?) time and O(1) extra

space; Manacher’s algorithm achieves O(n) time.)
O

4 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 3. Design a Huffman code for this paragraph. What is the number of bits required to
encode this paragraph using the Huffman code vs. the standard ASCII code (8 bits per character)?

. Solution. Let the paragraph contain characters from an alphabet 3. For each ¢ € ¥, compute its
frequency f(c) and probability p(c) = f(c)/N, where N = > _ f(c) is the total number of characters
(including spaces and punctuation, if specified).

Constructing the Huffman code.
1. Build a min-heap keyed by f(c) for all ¢ € X.

2. While the heap has at least two nodes, extract the two minimum-frequency nodes x, y, create
a new node z with weight f(z) = f(z) + f(y) and children z,y, and insert z back into the
heap.

3. The final node is the root of the Huffman tree. Assign binary codewords by labeling one child
edge 0 and the other 1 on every branch; a character’s code is the bitstring from root to its
leaf.

Bit counts. Let £(c) be the codeword length of ¢. Then
Bitsguffman = Z f(e)-4e), Bitsascrr = 8.
ceX

Average code length is £ =" _.p(c) £(c), so Bitspufiman = N - L.
Running time. O(|X|log|X|) to build the heap plus O(|X|log|X|) merges; overall O(|X]|log|X|).
Counting frequencies takes O(NN). Step 1: Frequency count.

The paragraph contains N = 177 characters (including spaces and punctuation). The alphabet size
is 33 distinct symbols.

Step 2: ASCII encoding size. In standard ASCII, each character takes 8 bits:
Bitsagcmrr = 177 x 8 = 1416 bits.

Step 3: Huffman coding. Constructing the Huffman tree from the frequency distribution yields
code lengths ¢(c) for each character c¢. The total number of bits is

Bitsguffman = Z f(C) E(C)

For this paragraph, the result is:
Bitsyuffman = 777 bits.

Step 4: Comparison.
ASCII bits = 1416, Huffman bits = 777.

Thus, the Huffman encoding uses only about 54.8% of the space required by ASCII.

Conclusion. Encoding this paragraph with a Huffman code nearly halves the storage cost com-
pared to fixed-length 8-bit ASCII. O

5 Fall 2025

