CSCI1570 Design and Analysis of Algorithms

Homework 4:
Due: November 2nd, 2025 at 2:30p.m.

This homework must be typed in INTEX and submitted via Gradescope.

Please ensure that your solutions are complete, concise, and communicated clearly. Use full sen-
tences and plan your presentation before your write. Except where indicated, consider every prob-
lem as asking for a proof.

Problem 1. Suppose the symbols a,b,c,d,e occur with frequencies 1/2, 1/4, 1/8,1/16, 1/16,
respectively.

(a) What is the Huffman encoding of the alphabet?

(b) If this encoding is applied to a file consisting of 1,000,000 characters with the given frequencies,
what is the length of the encoded file in bits?

Solution. (a) Building the Huffman tree. Merge the two least frequent symbols repeatedly:

d(1/16), e(1/16) — (1/8); ¢(1/8), (1/8) — (1/4); b(1/4), (1/4) = (1/2); a(1/2), (1/2) = 1.

Thus the codeword lengths are ¢(a) = 1, £(b) = 2, ¢(c) = 3, ¢(d) = £(e) = 4. One valid canonical
assignment is:
a0, bis10, crs 110, des 1110, e 1111.

(Any left/right tie-breaking yields an equivalent optimal code up to renaming the bits.)
(b) Expected length. The expected bits per symbol is

Effl=%1-1+1-2+%-3+L-4+L-4=05+0.5+0.375+0.25+ 0.25 = 1.875.

For 1,000,000 characters the encoded length is 1.875 x 10% = 1,875,000 bits.]

1 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 2. We use Huffman’s algorithm to obtain an encoding of alphabet {a, b, ¢} with frequen-
cies fq, fo, fe. In each of the following cases, either give an example of frequencies (fq, f, fc) that
would yield the specified code, or explain why the code cannot possibly be obtained (no matter
what the frequencies are).

(a) Code: {0, 10, 11}
(b) Code: {0, 1, 00}
(¢) Code: {10, 01, 00}

Solution. (a) Possible. This has lengths (1,2,2), which is exactly what Huffman produces on
three symbols: combine the two smaller to depth 2, and the largest gets depth 1. Any frequencies
with f, > max{fs, f.} work; e.g. (fa, f, fc) = (0.6,0.25,0.15) yields {a—0, b—10, c—11}.

(b) Impossible. The set {0,1,00} is not prefix-free because 0 is a prefix of 00. No prefix code
(Huffman or otherwise) can assign these codewords.

(c) Impossible. The lengths are (2,2,2) (all equal). While a prefix code with these words exists
(Kraft sum = 3/4), Huffman on three symbols always yields lengths (1,2, 2): it first merges the two
least frequent symbols, then merges that pair with the remaining symbol, making one codeword of
length 1 and two of length 2 (ties do not change this structure). Hence {10,01,00} cannot arise
from Huffman for any frequencies.]

2 Fall 2025

CSCI1570 Design and Analysis of Algorithms

Problem 3. Given an n-bit binary integer, design a divide-and-conquer algorithm to convert it
into its decimal representation. For simplicity, you may assume that n is a power of 2.

1. Provide a succinct (but clear) description of your algorithm, including pseudocode.
2. Prove the correctness of your algorithm.

3. Analyze the running time of your algorithm. Assume that it is possible to multiply two
decimal integers numbers with at most m digits in O(m!°823) time.

Hint: An n-bit binary integer x can be expressed as x = (xy,—1, Zp—2, -+ , 1, Zo)2 where z; € {0,1}.
Let z¢ = (Z/2-1,Tnj2—2," " »T1,%0)2 be the (n/2)-bit binary integer corresponding to the (n/2)
least significant digits of x. Let Xy = (Tn—1,Tn—2,""" , Tn/241, Tn/2)2 be the (n/2)-bit binary integer
representing the (n/2) most significant digits of z. Then, z = 2y + 27/2 . x,.. This should suggest
us a way to set up a divide and conquer strategy... :) Careful about the number of subproblems!

Solution. 1. Using the hint, the idea is to split the n-bit integer into the first half and second
half: call these n/2-bit halves x and y, respectively. Then, we want to compute 225 4 y.
Continue calling the algorithm on x, y until they are of 1-bit each, at which point we return
the value itself.

2. Clearly the base cases of length 1 work, since 0o = 0 and 15 = 1. It suffices to show that
=2 22, + x, is correct, where x;, z, are as defined in the hint. Indeed, notice that

T = (Tp,Tp-1," " ,T1)2
— (@ny o s Tpjar1, 0y 3 0)2 + (Tyas- - 5 71)2
= (Tn, 5 Tp2 + 1,0, ,0)2 + z
= gn/2($m... Ty 211)2 + T
=22 4z

since appending a zero to the end of a binary integer is equivalent to multiplying by 2 in dec-
imal and there are n/2 zeros. Thus, the algorithm properly handles base cases and correctly
combines the results from splitting.

3. Let T'(n) denote the number of operations needed for an n—bit binary integer. I claim that
T(n) = 2T(n/2) + O(n'°823)

After splitting, the conversion of x; and x; into decimal clearly take T'(n/2) each, yielding the
2T (n/2) term. As for the combine step, it suffices to determine the runtime of multiplying
2/2 by 1y, since addition is done in linear time, O(n).

To compute on/ 2 we can, say, repeatedly square starting at 2. This requires squaring
logy(n/2) = O(logn) times. Squaring is at worst multiplying two n/4-bit integers (in deci-
mal). In decimal, we have log;,(2"/*) = n/4 - log;,(2) = O(n) digits, so multiplication takes

3 Fall 2025

CSCI1570 Design and Analysis of Algorithms

O(n'°823) time. We do this for n/8, n/16, etc, so the runtime is

O(n10g23 + (n/2)10g23 4+ 4 1) — O(nIOgQ 3 + énlOgQ 3 + %nIOgQ 3 + .-)

_ 1 log, 3
=0 (1 —1/3")
— O(nlogQS)

It remains to multiply 272 and z;. However, both are n/2-bit integers, meaning the number
of digits in the decimal representation of 2; and 2"/2 is

O(log;(2"?)) = O(n)

Multiplying two decimal integers with at most m digits takes O(m!°%23) time, and since
each of ; and 22 have at most O(n) digits, the multiplication takes O(n'°823) time. The
recurrence relation becomes

T(n) = 2T (n/2) + O(n'*82%) + O(n'*82%) = 2T (n/2) + O(n'*22?)

We apply the Master theorem. Since logy(3) > logy(2) = 1, we have an instance of Case 3.
Indeed, setting 0 = 2/3,

logy 3 2 logy 3 nos23 logy 3

as desired. By Master theorem, then, T'(n) = ©(n'°823), which is our overall runtime.

4 Fall 2025

