Homework 9: Complexity Theory

Due: November 17, 2025

Problem 1. Given an undirected graph G = (V, E) and a subset of its vertices V', the sub-graph induced by V' is defined as G' = (V', E') where E' includes all edges from E with both endpoints in V' (that is $E' = (V' \times V') \cap E$).

A set $V'' \subseteq V$ is a *vertex cover* of G if all edges in E have at least one endpoint in V''. The *size* of a vertex cover is the number of vertices in it. We say that V'' is a *connected vertex cover* if the subgraph induced by V'' is connected.

The "k-connected vertex cover problem" (k-CONCOV) is a decision problem for which, given as input an undirected graph G and a positive integer value k we want to decide whether there exists a connected vertex cover of G of size k or less.

- Present a deterministic algorithm for solving k-CONCOV. Your algorithm should run in $O(n^{k+2})$ worst-case time. Argue the correctness of your algorithm and analyze its running time.
- Prove that k-CONCOV $\in NP$.

Solution.

- Algorithm: We enumerate all subsets $V' \subseteq V$ of size at most k. For each such V' we check:
 - 1. Whether V' is a vertex cover, i.e., for every $(u,v) \in E$, at least one of u or v lies in V'.
 - 2. Whether the induced subgraph G[V'] is connected.

If a subset passes both checks, we accept.

Correctness:

- If the algorithm accepts, then some enumerated set V' has size at most k, covers all edges, and induces a connected subgraph. By definition, V' is a connected vertex cover of size $\leq k$.
- If a connected vertex cover V'' of size at most k exists, then the algorithm will enumerate V'' and accept when checking it.

Runtime Analysis:

- There are at most

$$\sum_{i=0}^{k} \binom{n}{i} = O(n^k)$$

subsets of size at most k.

– Checking the vertex cover property requires inspecting all edges, which takes $O(m) \subseteq O(n^2)$ in worst case.

- Checking connectivity of G[V'] with BFS/DFS takes $O(|V'| + |E'|) \subseteq O(n^2)$.

Thus each subset is processed in $O(n^2)$ time, giving a total running time:

$$O(n^k) \cdot O(n^2) = O(n^{k+2}).$$

- k-CONCOV is in NP: A valid certificate consists of a set V' of vertices with $|V'| \leq k$. A polynomial-time verifier:
 - 1. Checks that $|V'| \leq k$.
 - 2. Checks the vertex cover property in $O(n^2)$ time.
 - 3. Checks whether G[V'] is connected in $O(n^2)$ time.

The verifier accepts a certificate c if and only if the graph G has a connected vertex cover of size at most k. All checks run in polynomial time, so k-CONCOV \in NP.

Problem 2. Let BF_k denote the set of Boolean formulas in Conjunctive Normal Form such that each variable appears in at most k places (i.e., in at most k literals). Show that the problem of deciding whether a Boolean Formula in BF_3 is satisfiable is NP-Complete. [Hint: You can replace a variable with several variable, adding a to the formula the condition these variables must have the same value.]

Solution.

- BF_3 -SAT \in NP: A certificate is a truth assignment to all variables in the formula. Evaluating the formula takes time linear in its size, so the problem is in NP.
- BF_3 -SAT is NP-hard: We reduce from 3SAT. Given a 3CNF formula ϕ , variables may appear more than three times. For each variable p that appears n > 3 times, we:
 - 1. Replace each occurrence of p by a fresh variable p_1, \ldots, p_n .
 - 2. Add the cycle of clauses enforcing equivalence:

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor p_3) \land \cdots \land (\neg p_n \lor p_1).$$

Each p_i appears at most three times: once replacing p in its clause, and twice in the equivalence cycle clauses. Call the resulting formula $f(\phi)$.

Correctness:

- If ϕ is satisfiable, extend a satisfying assignment by setting all p_i to the original value of p. All equivalence clauses and all original clauses (now rewritten) are satisfied.
- If $f(\phi)$ is satisfiable, the cycle clauses force $p_1 = \cdots = p_n$. Setting p to this common value satisfies ϕ .

Runtime Analysis: For each variable occurring n times, we introduce n new variables and O(n) new clauses. Summed over all variables, this yields a polynomial-size formula.

Thus $3SAT \leq_p BF_3$ and BF_3 -SAT is NP-complete.

Problem 3. Recall that a *literal* in a Boolean formula is either a Boolean variable (e.g., x_i) or its negated form (e.g., $\neg x_i$) appearing in the formula.

Let ϕ be a 3CNF formula. A \neq -assignment for the variables of ϕ is one in which each clause contains at least two *literals* with unequal truth values. In other words, a given clause cannot be assigned all true or all false literals in a \neq -assignment. For example, $(x_1, x_2, x_3) = (T, T, F)$ is a \neq -assignment for the following Boolean formula but $(x_1, x_2, x_3) = (F, T, F)$ is not:

$$(\neg x_1 \lor x_2 \lor x_2) \land (x_2 \lor x_2 \lor x_3)$$

- 1. Show that the negation of any \neq -assignment to ϕ is also a \neq -assignment of ϕ .
- 2. Let \neq -SAT denote the problem of deciding whether a Boolean formula has a \neq -assignment. Show that the following is a valid polynomial time reduction from 3SAT to \neq -SAT:
 - (a) Given an input ϕ check its format.
 - (b) If $f(\phi)$ is not in 3CNF then return

$$f(\phi) = u$$

where u is a Boolean variable that does not appear in ϕ .

(c) If ϕ is in 3CNF format, $f(\phi)$ is a Boolean expression where we add to each of ϕ 's clauses an additional literal u, where u is a new Boolean variable that did not appear in ϕ

For example, consider ϕ and $f(\phi)$ below:

$$\phi := (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_1 \lor x_3)$$
$$f(\phi) = (x_1 \lor x_2 \lor x_3 \lor u) \land (x_4 \lor x_1 \lor x_3 \lor u)$$

3. Conclude that \neq -SAT is NP-complete.

Solution.

1. The complement of a \neq -assignment preserves the property: Let α be a \neq -assignment. In every clause of ϕ , there exist literals ℓ_i and ℓ_j with $\ell_i(\alpha) \neq \ell_j(\alpha)$. Under the complement assignment $\bar{\alpha}$ we have

$$\ell(\bar{\alpha}) = \neg \ell(\alpha).$$

Thus,

$$\ell_i(\alpha) \neq \ell_j(\alpha) \quad \Rightarrow \quad \ell_i(\bar{\alpha}) \neq \ell_j(\bar{\alpha}),$$

so $\bar{\alpha}$ is still a \neq -assignment.

2. Reduction: Given a 3CNF formula

$$\phi = (C_1) \wedge \cdots \wedge (C_m),$$

form $f(\phi)$ by appending a new literal u to each clause:

$$f(\phi) = (C_1 \vee u) \wedge \cdots \wedge (C_m \vee u),$$

where u does not appear in ϕ .

Correctness:

 ϕ satisfiable $\Rightarrow f(\phi)$ has a \neq -assignment.

Extend a satisfying assignment for ϕ by setting u = F. Every clause already has a true literal from ϕ , and u is false. Hence each clause contains at least one true and one false literal, so it is a \neq -assignment.

 $f(\phi)$ has a \neq -assignment $\Rightarrow \phi$ satisfiable.

Let α be a \neq -assignment for $f(\phi)$.

- If $\alpha(u) = F$, then in each clause $(C_i \vee u)$, not all literals can be false. Thus at least one literal of C_i is true, so ϕ is satisfiable.
- If $\alpha(u) = T$, then consider the complement assignment $\bar{\alpha}$. By part (1), $\bar{\alpha}$ is also a \neq -assignment, and now $\bar{\alpha}(u) = F$. Using the previous case, ϕ is satisfiable.

Thus

$$\phi$$
 satisfiable $\iff f(\phi)$ has a \neq -assignment.

- 3. \neq -SAT is NP-complete:
 - Membership in NP: Given an assignment, we can verify in polynomial time that each clause has at least two literals evaluating differently.
 - NP-hardness: The reduction above shows 3SAT $\leq_p \neq$ -SAT (with the proof of correctness). The reduction is also completed in polynomial time because we are just doing a linear (in the input size) scan, adding the variable u to each clause.

Thus \neq -SAT is NP-complete.